
Python Scripting for Network
Automation

Introduction to Python in Networking

Overview: Python is a powerful tool in networking, enabling automation, configuration, and testing.

Objectives:

Understand how Python can be used to automate network tasks.

Learn about libraries like scapy and socket .

Python Libraries for Networking

Scapy:

A powerful Python library used for network packet manipulation and sniffing.

Allows for packet crafting, sending, and receiving.

Socket:

Provides low-level networking interface for Python.

Used for creating clients and servers, sending and receiving data.

Installing Scapy

Installation Command:

pipx install scapy

Verification:

Run scapy in the command line to enter the interactive Scapy interface.

Test by crafting a simple ICMP packet and sending it.

Basic Packet Crafting with Scapy

Crafting an ICMP Echo Request:

from scapy.all import *

packet = IP(dst="1.1.1.1")/ICMP()/"Hello, world!"

send(packet)

Explanation:

IP() creates an IP layer with dst as the destination IP.

ICMP() adds an ICMP echo request layer.

"Hello, world!" is the data payload.

Packet Sniffing with Scapy

Basic Sniffing Command:

packets = sniff(filter="icmp", count=10)

packets.summary()

Discussion:

Filters for ICMP packets.

Sniffs 10 packets and displays a summary.

Using Python socket for Basic Networking

Creating a TCP Client:

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect(("example.com", 80))

s.send(b"GET / HTTP/1.1\r\nHost: example.com\r\n\r\n")

s.close()

Explanation:

Establishes a TCP connection to example.com on port 80.

Sends a simple HTTP GET request and then closes the socket.

Practical Exercise

Task: Create a script to perform a simple network task using Scapy or socket.

Example Tasks:

Craft and send a custom ARP request.

Create a simple server that responds to specific commands from clients.

Deep Dive into Wireshark and Packet Analysis

Introduction to Advanced Wireshark Techniques

Overview: Building on basic Wireshark skills to explore deeper functionalities.

Objectives:

Learn to use advanced filtering.

Analyze complex packet sequences.

Understand protocol-specific details in depth.

Advanced Filtering in Wireshark

Filtering by Protocol, IP, and Port:

Examples of complex filters: tcp.port == 80 && ip.src == 192.168.1.1

Using filters to isolate specific conversations or issues.

Using Display Filters for Real-Time Analysis:

Crafting display filters to view only relevant traffic during live capture sessions.

Graphical Analysis of Network Traffic

Using Wireshark’s Graphical Tools:

How to access and use IO Graphs, Flow Graphs, and Protocol Hierarchy.

Example: Creating an IO Graph to track data rates over time.

Walkthrough of setting up an IO Graph with specific filters.

Analyzing TCP/IP Sessions

Reconstructing TCP Sessions:

How to follow a TCP stream in Wireshark.

Analyzing sequence and acknowledgment numbers to understand flow control.

Identifying Retransmissions and Lost Packets:

Using Wireshark to pinpoint problematic areas in communication.

Protocol Specific Analysis

HTTP: Inspecting request and response headers for web traffic.

DNS: Analyzing DNS queries and responses to understand website loading issues.

VoIP: Tracing call setup and RTP streams in VoIP communications.

Practical Packet Analysis Exercises

Task: Use provided pcap files to identify network issues, unauthorized access, or performance bottlenecks.

Exercise Details:

Analyze a pcap file with mixed traffic and identify the cause of a network slowdown.

Trace a file download sequence and identify any transmission errors.

Using Wireshark for Security Analysis

Identifying Suspicious Activities:

Techniques to detect malware traffic, exfiltration of data, and potential command and control

communications.

Security Protocols:

Analyzing SSL/TLS negotiations and identifying weak cipher suite usage.

Basic Penetration Testing with Python
Introduction to Penetration Testing with Python

Overview: Utilizing Python for penetration testing to identify and exploit security vulnerabilities.

Objectives:

Understand the role of scripting in penetration testing.

Learn to develop Python scripts that simulate basic cyber attacks.

Setting Up the Environment

Safe Practice Environment:

Importance of using controlled and ethical environments for penetration testing.

Setup guidelines for a virtual lab using tools like VirtualBox or VMware.

Python and Additional Libraries:

Ensuring Python is installed and set up.

Introduction to libraries like requests , BeautifulSoup , and paramiko for web scraping, SSH

connections, etc.

Writing a Simple Port Scanner

Understanding Port Scanning:

The purpose of port scanning in penetration testing.

Legal implications and ethical considerations.

Python Port Scanner Script:

import socket

def port_scanner(host, port):

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:

 s.connect((host, port))

 return True

 except:

 return False

if port_scanner('example.com', 80):

 print("Port 80 is open")

Crafting a Basic SQL Injection Tester

Introduction to SQL Injection:

Explanation of SQL injection and its impact on database security.

Python Script for Testing SQL Injection Vulnerability:

import requests

def test_sql_injection(url):

 response = requests.get(url + " ' OR '1'='1")

 if "database error" in response.text:

 return True

 return False

Automated Script for Brute-Force Attacks

Understanding Brute-Force Attacks:

Discuss how brute-force attacks work and their application in testing password strength.

Brute-Force Script with Python:

import itertools

import socket

def brute_force_login(hostname, port, username, password_list):

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.connect((hostname, port))

 for password in password_list:

 s.send(f"login {username} {password}\r\n".encode())

 response = s.recv(1024).decode()

 if "Login successful" in response:

 print(f"Found credentials: {username}, {password}")

 break

 s.close()

